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Abstract

In bi-parametric linear optimization, perturbation happens in both the right-hand-side
and the objective function coefficient with different nonzero parameters. In this paper we are
interested in identifying the region where the support set of a given optimal solution for primal
and dual problem is invariant in bi-parametric linear optimization. In general, we denote that
this region is a rectangle in R? if its not a line or a singleton. It is proved that the boundaries
of these regions can be identified in polynomial time.
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1 Introduction

In practice, input data in optimization problems might perturb according to time or economic
requirements. Sometimes, this variation cause to lose optimality or feasibility of optimal solutions.
Investigating the behavior of the problem when input data changes is referred to as sensitivity
analysis and parametric programming.

In Linear Optimization (LO) problem, variation usually happens in the Right-Hand-Side (RHS)
or in the objective function coefficient data. If perturbation occurs either in the RHS or in objective
function coefficient or in the both but with identical parameter, then the problem is called uni-
parametric programming. However, when these parameters vary independently, the problem is
referred to as bi-parametric LO problem.

Let a bi-parametric LO problem be defined as

LP(e, N min {(c+ AAc)Tx | Az = b+ eAb, z > 0},

where A € R™*" b € R™, and ¢ € R, € and X are two real parameters not necessarily equal,
Ab € R™ and Ac € R" are perturbing directions, and z € R" is an unknown vector. Its dual is
defined as

LD(e, \) max {(b+eAb)Ty | ATy+s=c+ AAc, s >0},

where y € R™ and s € R" are unknown vectors.

A vector z(e) > 0 is called a primal feasible solution of LP(e, ) if it satisfies the constraint
Az = b+ eAb, and any vector (y()),s())) with s(\) > 0 satisfying ATy + s = ¢ + AAc is referred
to as a dual feasible solution of LD(e, A). Observe that the primal feasible solution dependents
only on parameter ¢ and the dual feasible solution just varies depending on A. According to
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weak duality property, any primal feasible solution z(e) and any dual feasible solution (y(\), s(\))
satisfies (¢ + AAc)Tz(e) > (b + eAb)Ty()). The equality z(e)Ts(A) = 0 holds if and only if
these feasible solutions are optimal (complementary slackness property). In this case, according
to strong duality property, objective functions values of primal and dual problems are equal, i.e.,
(c+ MAc)Tz(e) = (b+ eAb)Ty(N). Let LP(e, ) and LD(e,\) denote feasible solution sets of
problems LP(e,\) and LD(e, \), respectively. Further, let LP*(e,\) and £LD* (¢, ) denote their
optimal solution sets, correspondingly. For the cases when there is no perturbation, we drop € and
A from the notation. Analogously, for uni-parametric LO problem, the corresponding e or A are
omitted from all notation.

We say (z*(€),y*(\), s*()\)) is a primal-dual strictly complementary optimal solution if for all
i € {1,...,n}, either z}(e) or s7()\) is zero but not both. It means that z*(e)Ts*(\) = 0 with
z*(e) +s*(\) > 0. If LP(¢,\) and LD(e, \) are nonempty, then there is such primal-dual optimal
solution (Goldman-Tucker Theorem [9]).

The support set of nonnegative vector v is defined as o(v) = {i : v; > 0}. We partition the
index set {1,...,n} into two subsets

B(e,\) = {i|z;(e) >0 for a primal optimal solution z*(e)};
N(e,A) = {i|si(\) >0 for a dual optimal solution (y*(\), s*(\))}.

This partition is called optimal partition of the index set {1,...,n} for problems LP(e,\) and
LD(e, \) and is denoted by 7 (e, \) = (B(e, A), N(e, A)). Because optimal solution sets LP™ (e, A) and
LD (e, A) are convex, the optimal partition is unique. After the landmark paper of Karmarkar [10],
interior point methods are widely used to solve LO problems in polynomial time [11]. An interior
point method terminates in a primal-dual strictly complementary optimal solution that is capable
to identify the optimal partition as well.

Recently Koltai and Terlaky [8] categorized sensitivity analysis in LO to three different classes.
The first type is referred to as basis invariancy sensitivity analysis, that the goal is finding the range
of variation of parameters where the given optimal basic solution remains optimal. The second
type is known as support set invariancy sensitivity analysis and in this point of view, identifying
the range of variation of parameters is aimed where the support set of an optimal solution of
the perturbed problem remains identical with the support set of the given optimal solution of
the unperturbed problem. In the third point of view to sensitivity analysis, so-called optimal
partition invariancy sensitivity analysis, we are interested in finding the region for the variation of
parameters where for any parameters in this range, optimal partition is invariant.

Uni-parametric programming has been studied since the simplex method invented by Dantzig [1].
However, there are few published results in bi-parametric programming. Recently, Ghaffari et. al. [4]
studied optimal partition invariancy sensitivity analysis in bi-parametric linear optimization. Let
us review their result in a nutshell. The region where optimal partition remains invariant is re-
ferred to as invariancy region. It was proved that the invariancy region is a rectangle if it is not a
line-segment or the singleton {(0,0)}. All invariancy regions altogether generate a mesh-like area
in R? constructed by vertical and horizontal (half-)line segments [4]. The region that contains the
origin is referred to as actual invariancy region. The lines between two differen rectangular-type
invariancy regions are called transition lines and the intersection of transition lines are referred to
as transition points. It is worth mentioning that optimal partition on transition lines and transition
points are different from the optimal partition in the invariancy region they enclosed. Thus, they
are invariancy regions themselves, and referred to as trivial invariancy regions in contrast to the
rectangular-type regions that are referred to as non-trivial invariancy regions.

Support set invariancy sensitivity analysis has been studied for Uni-parametric LO problem
when it is in standard form [3, 7] and when it is in general form including free variables and
inequalities in addition to nonnegative variables [2].

In this paper, we consider the problem LP(e, A) when both Ab and Ac are nonzero vectors and
the parameters e and A are not necessarily equal. We answer the questions: ”What is the range
of the parameters, where there exists a primal optimal solution for perturbed problem with the
same support set of a given primal optimal solution of the unperturbed problem?”. We also answer
analogous question for the dual problem considering the support set of the slack variable and for
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the primal and dual problems simultaneously. Computational methods are presented that enable
us to identify these regions in polynomial time.

The paper is organized as follows. In section 2, the results obtained in uni-parametric LO
problem are summarized. Section 3 is devoted to derive some fundamental properties. In the
sequel, main theorems are proved that enable us to identify the desired regions by solving auxiliary
LO problems. In section 4 a simple example is presented to illustrate the obtained results. The
final section includes a summary of results and future research line.

2 preliminaries

In this section we first define some basic concepts and then review the results of support set
invariancy sensitivity analysis obtained in [3, 7], because they have a major rule in identifying the
corresponding regions in bi-parametric LO problem.

2.1 Basic concepts

Let # = (B,N) be the optimal partition of the index set {1,...,n} for problems LP and LD.
Moreover, let (z*,y*, s*) be a primal-dual optimal solution for problems LP and LD with properties
o(z*) = P and o(s*) = P. It should be mentioned that z* is not necessarily a basic nor a strictly
complementary optimal solution.

In addition to the optimal partition, one can partition the index set {1,...,n} to three other
partitions. The first partition is (P, Z) where P = {i : 27 > 0} and Z = {1,...,n}\P. It is
obvious that P C B and N/ C Z and the equality holds when the given primal-dual optimal
solution (z*,y*,s*) is strictly complementary. In support set invariancy sensitivity analysis, we
want to find the range of variation of parameters e and A\, where for any parameters value in this
region, there is a primal optimal solution z*(¢) with o (x (e)) = P.

The other partition can be defined as (P, Z) where P = {i : s > 0} and Z = {1,...,n}\P. Tt is
obvious that P C B C Z and P C N C Z and equality holds when the given prlmal—dual optimal
solution is strictly complementary. In active constraint set invariancy sensitivity analysis, we are
interested to identify the range of the parameters € and A variation where for any parameters value
in this region, the dual perturbed problem LD(e, A) has at least an optimal solution (y*(\), s*()\))
with o(s*(\)) = o(s*) = P.

The last partition so-call characteristic invariancy partition can be defined as (P, Z , }A’) where
7 = {1,...,n}\(P U PA’) Considering this partition, we want to identify the range of varia-
tion of parameters where for any € and A in this region, there is a primal-dual optimal solution
(z*(€),y"(A), s*(A)) with properties J(x (6)) = o(z*) = P and o(s*(A)) = o(s*) = P. Tt is easy
to verify that the relations Z = ZUPand Z = ZUP hold and Z = ( if and only if the given
primal-dual optimal solution (z*,y*,s*) is strictly complementary.

The optimal value function of problem LP(e,\) and LD(e, ) is defined as:
86, A) = (¢ + AAQ)Ta" () = (b + eAb)Ty* (),

where Ab and Ac are perturbing directions and (z*(e),y*(\), s*(\)) is a primal-dual optimal solu-
tion of problems LP(e, \) and LD(e, A). It is proved that the optimal value function is a bi-variate
quadratic function on this domain [4]. It is univariate function, when either € or A is fixed (to
zero)[4, 11]. In this case, the optimal value function is a piecewise continuous linear function [11].
When e = A, the optimal value function is quadratic but uni-variate function[5]. In all cases, at
the points (lines), where the representation of the optimal value function changes, optimal par-
tition is changed as well. These lines and points are called transition lines and transition points
respectively.
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2.2 Uni-parametric LO case

Recall that for A = 0 (or Ac = 0), problems LP(e, \) and LD(e, A) reduce to the following uni-
parametric problems

LP(e) min {c'z | Az = b+ eAb,z > 0},
LD(e) max {(b+ eAb)Ty | ATy +s=rcs>0}.

On the other hand, for ¢ = 0 (or Ab = 0), we have the following primal and dual LO problems:

LP(\) min {(c+ Ac)Tz | Az = b,z > 0},
LD(A) max {bTy | ATy +s=c+AAc,s > 0}.

For the case when both ¢ and A are not zeros but ¢ = A, we have the following primal and dual
LO problems.

LP(e, A =¢) min {(c+eAc)Tz | Az = b+ eAb,z > 0},
LD(e, A\ =¢) max {(b+eAb)Ty | ATy +s=c+eAc,s >0}

2.2.1 Support set invariancy sensitivity analysis in Uni-parametric LO problem

Assume that we are given an optimal solution z*, with the support set o(z*) = P. In this way
the partition (P, Z) is defined for the index set {1,...,n}, where Z = {1,...,n}\P. Considering
this partition, the Invariant Support Set (ISS) interval of problem LP(e) is denoted by Y (e), that
is the interval where there is an optimal solution z*(e¢) with the property o(z*(¢)) = P for each
A in this interval. It is proved that the ISS interval Y (e) can be identified in polynomial time by
solving the following auxiliary LO problems [3]:

el:min {G:Apl‘p—eAb:b,l‘PZO}, (].)

€, =max {e: Apxp—eAb=0b,zp > 0}, (2)

where Ap and xzp are the parts of A and x corresponding to P, respectively. It is proved that if
e = 0 is not a transition point of the optimal value function of LP(e), then the ISS interval Y (e)
is an open interval, otherwise this is a half-closed interval if it is not the singleton {0}. Observe
that this interval is the singleton {0} when ¢ = ¢, =0 [3].

Let T(A) denote the ISS interval of problem LP(A). It is proved that when A = 0 is not a
transition point of the optimal value function of this problem, then the ISS interval YT (\) coincides
the closure of the actual invariancy interval, the invariancy interval that contains the origin (See
Theorem 2.10 in [3]). However, when A = 0 is a transition point of the optimal value function then
one of the following propositions holds (See Theorem 2.11 in [3]):

1. If A € [A_,0), then T(\) = [A_,0],
2. If A € (0, A4 ], then T(A) = [0, \4],
3. TN = {0},

where Ay (A_) is the immediate transition point adjacent to the right (left) of tramsition point
A = 0. Observe that Ay (A_) might be +00 (—00).

For the case, when both the RHS of the constraint and the coefficient of the objective function
are perturbed but with the same parameter, we have Y(e,A =€) = T(e) N T (A = ¢).

2.2.2 Invariant active constraint set invariancy sensitivity analysis in Uni-parametric
LO problem

Observe that invariancy of the support set for the slack variable of a dual optimal solution is
equivalent to invariancy of the corresponding support set of constraints in dual problem. For this
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reason, the ISS interval for dual problem is referred to as Invariant Active Constraint Set (IACS)
interval for problem LD(e) that is denoted by I'(e).

Let (y*,s*) be a dual optimal solution of LD with the property o(s*) = P. In this way, the
TACS partition (ﬁ, 2) of the index set {1,...,n} is defined. Let 7; and -, be the extreme points
of T'(¢). Tt is proved that these values can be identified by solving the following two auxiliary LO
problems (See Theorems 3.5 and 3.10 in [7]):

v =min{e: Azxy; — eAb=b,x5 > 0}, (3)

Yu =max{e: Azz,; — eAb=0b,x; > 0}. (4)

It is also proved that the TACS interval I'(e) is always a closed interval.
On the other hand, if 4, and 7, denote the end points of I'(A), they can be determined by
solving the following two auxiliary LO problems (See Theorems 3.5 and 3.13 in [7]):

~; = min{\ : A%y AGTE ci,A}Tgy +sp — Mcp = cp,sp > 0}, (5)

Yo = max{\ : Agy —Mcy = Cz,Agy +5p— Mcp =cp,sp >0} . (6)

We remind that if A = 0 is not a transition point of the optimal value function, then the IACS
interval I'(A) is an open interval. Otherwise, it is a half-closed interval. Similar to the ISS interval
in the case when e = A\, we have I'(e, \ = ¢) =T'(e) NT' (A =€) [7].

2.2.3 Characteristics Invariancy sensitivity analysis in Uni-parametric LO problem

Considering the partition (P, Z, 13), the Invariant Characteristics (IC) interval can be defined. Let
us denote this interval for the perturbation of the RHS data and the objective function data with
O(e) and A(\), respectively. It is proved [7] that ©(e) = Y(e) and ©(\) = I'(A) and consequently,
O(e, A =€) =T(e) NT (A =¢).

2.2.4 Completing remarks

Note that the auxiliary LO problems (1-6) can be solved in polynomial time by an interior point
method. It is also proved that in uni-parametric LO problem, when perturbation occurs either
in the RHS of the constraints or in the coefficient of the objective function, the optimal value
function is linear on the ISS intervals Y(e) or Y(A) [3]. However, for the case e = A, the optimal
value function is a univariate quadratic function on these intervals [3, 7]. These properties of the
optimal value function implies that non of the ISS, IACS and IC intervals do not cover more that an
invariancy interval with the exemption that they might include the end points of the corresponding
invariancy interval.

3 Bi-parametric LO problem

For the case of bi-parametric LO problem, we prefer to follow the notation used in uni-parametric
case. Let Y(e,A), I'(e,A) and O(e, \) denote the ISS, IACS and IC regions in bi-parametric LO
problem, respectively.

3.1 Fundamental properties

The following lemma states that the ISS, TACS and IC regions are convex sets and consequently,
to identify these regions, it is enough to identify their boundaries.

Lemma 3.1 The ISS, IACS and IC regions are convez sets.

Proof: We only prove this property for the ISS region. The proofs of the convexity for TACS and
IC regions go analogously. The proof is obvious when the ISS region is the singleton {(0,0)}.
Let (e1, A1) and (e, X2) be two arbitrary points in Y(e,\). Further, let (z(*),y™) s(1)) and
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(), 5(?)) be primal-dual optimal solutions of problems LP(e, \) and LD (e, \) at these points,
respectively. We know that o(z1)) = o(2(?)) = P, 0(s))) C Z and 0(s®) C Z. For an arbitrary
point (€, \) on the line segment between two points (€1, A1) and (e2, A2), there is a § € (0,1) such
that:

We define
2@ = 6z +(1-0)z?,
yX) = 6y +(1-0)y®,
s = 65 4+ (1-6)s?.

It is easy to verify that z(€) € LP(€, A) and (y(X), s(X)) € LD(€, X). Moreover, o(z(€)) = U(f(l)) u
o(z®) =P, and o(s(X)) = a(s(V)Uo(s?) C Z, that prove the optimality of (z(€),y(X), s(X)) for
problems LP(€, \) and LD(g, \), as well as the invariancy of the support sets of the primal optimal

solution z*(€). The proof is complete. O

The following theorem talks about the fact that when both Ab and Ac are nonzero vectors and
€ # )\, the optimal value function ¢(e, \) is a bivariate quadratic function on the ISS, TACS and
IC regions. The proof is similar to the proof of Theorem 2.13 in [4] and is omitted.

Theorem 3.2 The optimal value function ¢(e, N) is a bi-variate quadratic function on the closure
of regions T (e, \), T'(e, X) and O(e, N).

Corollary 3.3 The regions Y(e, ), T'(e, \) and O(e,\) can not cover more than an (actual) in-
variancy region with the exemption that they might include some parts of the borders of the corre-
sponding invariancy region.

3.2 Identifying the ISS regions

Let use establish a theorem that is about the relationship between the ISS region and the two
corresponding intervals in uni-parametric case. This relationship plays a major role in identifying
this region and speaks of the fact that this identification can be carried out in polynomial time.

Theorem 3.4 Consider the bi-parametric LO problem LP(e,\). Let Y(¢) be the ISS interval of
problems LP(¢) and LD(¢). Further, let T(\) be the ISS interval of problems LP(\) and LD()).
then

T(e,\) = T(e) x T(N).

Proof: Let (z*,y*,s") be a primal-dual optimal solution of problems LP and LD with o(z*) = P
and o(s*) C Z. First we prove inclusion

T(e) x T(A) C Y(e, \). (7)

Let € € Y(e) be an arbitrary fixed parameter. According to lemma 2.2 in [3], the dual optimal
solution set £D*(e) is invariant for all € € Y(e). Therefore, (z*(€),y*, s*) is a primal-dual op-
timal solution of problems LP(€) and LD(€), with the property o(z*(€)) = P . Similarly, let
X € T(\) be an arbitrary fixed parameter. According to lemma 2.8 in [3], the primal optimal

solution set LP*(A) is invariant for all A € Y()X). Therefore, one might consider (z*,y*(\), s*(X))
as a primal-dual optimal solution of problems LP(X) and LD()). It is obvious that z*(¢) and
(y*(X),s*(X\)) are feasible solution of problems LP(¢,\) and LD(E,\), respectively. Moreover,
equality z*(€)Ts*(\) = 0 implies the optimality of these solutions. It means that (¢,\) € Y (e, \)
that proves the inclusion (7).
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Now, we prove inclusion
T(e, ) € Y(e) x T(A). (8)

Let (€,A) € Y (e, A) be given and (2*(€),y*(\), s*(€)) be a primal-dual optimal solution of problems

LP(,\) and LD(g,\). Thus, o(z*(€)) = P and o(s*(\)) C Z. Therefore, (z*(€),y*,5") is a
primal-dual optimal solution of problems LP(€) and LD(€). Analogously, (z*,y*(\),s*(})) is a
primal-dual optimal solution of problems LP()) and LD(A). It means that € € T(e) and A € T())

and the inclusion (8) is proved. The proof is complete. O

Remark 3.5 The ISS region Y(e,\) is a (half-)line segment containing the origin, whenever ei-
ther Y(e) or Y(X) is the singleton {0}. If both Y(e) and Y(X) are {0}, then Y(e,\) = {(0,0)}.
Otherwise, the ISS region Y (e, \) is a half-open rectangle in R?. By the half-open rectangle, we
mean that horizontal line borders always are included in Y (e, \). Because the 1SS interval Y(X) is
always a closed interval [3]. However, its vertical line borders might not belong to Y (e, \). Because,
Y (e) is an open interval if € =0 is not a transition point of the optimal value function ¢(€) and if
€ = 0 is one of the end points of Y(¢) (equivalently, ¢ = 0 is a transition point of the optimal value
@(€)) then the ISS region Y (e, \) includes one of its vertical borders as well.

Remark 3.6 According to Theorem 3.4, to identify the ISS region Y (e, \), it is enough to identify
the ISS intervals Y(e) and Y (). Since these intervals can be identified in polynomial time, thus
the ISS region Y (e, ) can be identified in polynomial time as well.

3.3 Identifying the IACS region

Let us present the method of identifying the TACS region I'(¢,\). The proof of the following
theorem is similar to the proof of Theorem 3.4 and is omitted.

Theorem 3.7 Let T'(e) be the IACS interval of problems LP(e) and LD(€). Further, let T'(\) be
the IACS interval of problems LP(X) and LD(\). Then

T(e,\) = D(e) x T(N).

Remark 3.8 The IACS region T'(e,\) is a (half-)line segment containing the origin, whenever
either T'(€) or T'(A) is the singleton {0}. If both T'(¢) and T'(X\) are singleton {0}, then T'(e,\) =
{(0,0)}. Otherwise, the IACS region T'(e,\) is a half-open rectangle in R>. By the half-open
rectangle here, we mean that its vertical line borders always are included in T'(e,\). Because the
IACS interval T'(€) is always a closed interval [7]. However, its horizontal line borders might
not belong to T'(e, \), because T'(\) is an open interval if X = 0 is not a transition point of the
optimal value function ¢(\). If X = 0 is one of the end points of T(\) (equivalently, A = 0 is a
transition points of the optimal value function ¢(X)), then the IACS region T'(e, \) includes one of
its horizontal borders as well.

3.4 Identifying the IC region

Recall that the IC region is the intersection of the ISS region and the IACS region in uni-parametric
LO problem [7]. It can be easily concluded that this property holds in bi-parametric LO case as
well.

Theorem 3.9 Let Y(e) be the ISS interval of problem LP and I'(\) be the IACS interval for
problem LD. Then
O(e,\) = O(e) x O(N) = T(e) x T'(A).

87



_1
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-2
Case 3. Optimal degenerate Case 2. Optimal non-degenerate Case 1. Strictly complementary
basic solution. basic solution. optimal solution.

Figure 1: Different ISS regions corresponding to different kinds of optimal solutions in Example 1.

4

Illustrate Example

In this section, a simple example is presented to illustrate the obtained results in identifying the
ISS region for the case when the primal optimal solution is not unique. Analogous examples can
be designed to illustrate obtained results in identifying the TACS and the IC regions.

Example 1: Consider the primal problem as:

min —r1 —T3

s.t. Ty +xo +a3 =2
—T1 +xo 4124 =1 (9)
2.’E1 —I9 45 = 4

T, T2, x3, Ty, Ts, Z 0.

The optimal partition of the index set {1,2,3,4,5}is 7 = (B,N) = ({1,2,4,5},{3}). Let Ab =
(1,-2,1)T and Ac = (-2,1,0,0,0)7 be perturbing directions. The actual invariancy region is the
transition line {(¢,0) | —2 < € < 1}. One can categorizes optimal solutions of problem (9) in three
cases.

5

e Case 1. Strictly complementary optimal solution, such as z(!) = (1,1,0,1,3)T. For

this kind of optimal solutions, we have P = o(z(!)) = {1,2,4,5}. In this case, the ISS region
coincides the actual invariancy region and consequently, T (e, A) = (—=2,1) x 0 (See Figure 1).

Case 2. Primal optimal non-degenerate basic solution, such as z(?) = (%, %, 0,0, %)T.
For this optimal solution, the ISS interval Y(e) is (—%,1) and because A = 0 is a transition
point, T(\) = [—2, 0] the closure of the invariancy interval to the left of the transition point
A =0. Thus, T(e,A) = (—3%,1) x [-2,0], Observe that in this case, the region is a rectangle
that contains its horizontal borders (See Figure 1).

Case 3. Primal optimal degenerate basic solution, such as z(*) = (2,0,0,3,0)7. In
this case, ¢ = 0 is a transition point of the optimal value function ¢(€) and consequently, the
ISS interval Y (e) is the singleton {0}. On the other hand, A = 0 is a transition point of the
optimal value function ¢(\) and we have Y(A\) = [0, +00). Thus, T(e,A) =0 x [0,4+00) (See
Figure 1).

Conclusion

We investigated support set, active constraint set and characteristic invariancy sensitivity analysis
for primal and dual LO problem in bi-parametric case. It was proved that the corresponding regions
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are rectangles in general and in special cases they might be line-segments or even a singleton. All
these regions includes the origin but they do not contain more than an invariancy region with the
exemption that they might include some parts of their vertical or horizontal borders.

Support set invariancy sensitivity analysis has been studied for the LO problem in general case,
when the LO problem has free variables and inequalities in addition to nonnegative variables and
equalities in uni-parametric case [2]. Moreover, these point of views to sensitivity analysis have
been studied in convex quadratic optimization problem [7]. Our approach can be generalized to
cover these cases too. Furthermore, support set expansion sensitivity analysis has been studied
in both uni-parametric LO and convex quadratic problems [6]. One my interested in studying
support set expansion sensitivity analysis in bi-parametric case for these problems too.
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